Name: _____

Instructor: _____

Math 10550, Exam II October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- \bullet The exam lasts for 1 hr. and 15 m..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!								
1.	(a)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(c)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(e)			
4.	(a)	(b)	(c)	(d)	(e)			
5.	(a)	(b)	(c)	(d)	(e)			
6.	(a)	(b)	(c)	(d)	(e)			
7.	(a)	(b)	(c)	(d)	(e)			
8.	(a)	(b)	(c)	(d)	(e)			
9.	(a)	(b)	(c)	(d)	(e)			
10.	(a)	(b)	(c)	(d)	(e)			

 Please do NOT write in this box.

 Multiple Choice

 11.

 12.

 13.

 Total

Multiple Choice

1.(6 pts.) A particle is moving along an axis. Its position at time t (seconds) is given by $s(t) = t^3 - 6t^2 + 9t,$

where s(t) is measured in feet. What is the total distance travelled by the particle between t = 0 and t = 2 seconds.

- (a) 6 feet (b) 10 feet (c) 2 feet
- (d) 4 feet (e) 5 feet

2.(6 pts.) The height of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 3 cm/s. When the height is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?

- (a) $190 \,\mathrm{cm^2/s}$ (b) $211 \,\mathrm{cm^2/s}$ (c) $140 \,\mathrm{cm^2/s}$
- (d) $11 \,\mathrm{cm^2/s}$ (e) $24 \,\mathrm{cm^2/s}$

Name: ______ Instructor: ______

3.(6 pts.) Use linear approximation of $f(x) = \frac{1}{\sqrt{x}}$ at a = 4 to estimate $\frac{1}{\sqrt{3.9}}$. (a) $\frac{1}{\sqrt{3.9}} \approx \frac{79}{160}$ (b) $\frac{1}{\sqrt{3.9}} \approx \frac{11}{20}$ (c) $\frac{1}{\sqrt{3.9}} \approx \frac{1}{2}$ (d) $\frac{1}{\sqrt{3.9}} \approx \frac{9}{20}$ (e) $\frac{1}{\sqrt{3.9}} \approx \frac{81}{160}$

4.(6 pts.) Find the linearization L(x) of the function $f(x) = \sin(2x)$ at $a = \frac{\pi}{4}$.

(a)
$$L(x) = 1 - \frac{\sqrt{2\pi}}{4} + \sqrt{2}x(b)$$
 $L(x) = 1$ (c) $L(x) = 1 - \frac{\pi}{2} + 2x$

(d)
$$L(x) = 1 + x$$
 (e) $L(x) = 1 + \frac{\pi}{2} - 2x$

5.(6 pts.) Find all critical points (critical numbers) of

$$f(x) = x^4 + \frac{16}{3}x^3 - 10x^2 - 12.$$

- (a) x = -2, 0, 2 (b) x = 5, 0, -1 (c) x = -5, 1
- (d) x = 0, -2 (e) x = -5, 0, 1

6.(6 pts.) Let

$$f(x) = x^3 + 3x^2 - 24x.$$

Find the absolute maximum and absolute minimum values of f on the interval [0, 10].

- (a) Max at x = 4; Min at x = 0. (b) Max at x = 10; Min at x = 0.
- (c) Max at x = 4; Min at x = 1. (d) Max at x = 10; Min at x = 2.
- (e) Max at x = 8; Min at x = 2.

7.(6 pts.) Find the local maxima and minima of

$$f(x) = 3x^{2/3} - x$$

where f(x) is defined for all real numbers x.

- (a) f has a local minimum at x = 0 and a local maximum at x = 8.
- (b) f has a local maximum at x = 8 and no local minimum.
- (c) f has a local maximum at x = 0 and a local minimum at x = 1/8.
- (d) f has a local minimum at x = 0 and a local maximum at x = 1/8.
- (e) f has a local maximum at x = 1/8 and no local minimum.

8.(6 pts.) Let

$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + 10.$$

On which of the following intervals is the graph of the function f both decreasing and concave upward on the entire interval?

- (a) $(-\infty, 2)$ (b) (1, 2) (c) $\left(-\infty, \frac{3}{2}\right)$
- (d) $\left(\frac{3}{2}, 2\right)$ (e) (0, 2)

Name: ______ Instructor: _____

9.(6 pts.) Consider the function

$$f(x) = \frac{3x^3 - 3}{(2x+2)(x^2 - 7x + 10)}$$

Which of the following is true?

- (a) f has a horizontal asymptote at y = 1 and vertical asymptotes at x = -1, 2, 5.
- (b) f has a horizontal asymptote at $y = \frac{3}{2}$ and vertical asymptotes at x = 1, 2, 5.
- (c) f has a horizontal asymptote at $y = \frac{3}{2}$ and vertical asymptotes at x = -1, 2, 5.
- (d) f has a horizontal asymptote at y = -1 and vertical asymptotes at x = -1, 2, 5.
- (e) f has a horizontal asymptote at $y = \frac{3}{2}, -\frac{3}{2}$ and vertical asymptotes at x = -1, 2, 5.

10.(6 pts.) Let f be a function of x. The table below shows whether the functions f'(x) and f''(x) are positive, negative or have value 0 at each of the given values of x.

x	-2	0	2
f'(x)	= 0	= 0	= 0
f''(x)	> 0	= 0	< 0

Which of the graphs shown below is a feasible graph of f(x)?

(Note that the label for each graph is given on the lower left of the graph.)

(e) None of the above

Name: _____

Instructor: _____

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(13 pts.) Show that

 $x^5 + 2x^3 + 2x - 3 = 0$

has one and $\underline{exactly}$ one solution. Identify the theorem(s) you are using.

 Name:

 Instructor:

12.(13 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ (measured in radians), the distance from C to B by x, and the distance from C to A by y. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

13.(14 pts.) Suppose f(x) is a function which is continuous and differentiable on the interval $\left(-\frac{3\pi}{4},\frac{3\pi}{4}\right)$ with

$$f'(x) = 1 - \sin^2 x.$$

Warning: the formula shown above is for the DERIVATIVE of f(x)

(a) Find all critical points (critical numbers) of the function f(x) in the given interval.

(b) List the subintervals of $\left(-\frac{3\pi}{4},\frac{3\pi}{4}\right)$ where f is increasing / decreasing.

(c) List all local maxima and local minima of f in the interval $\left(-\frac{3\pi}{4},\frac{3\pi}{4}\right)$, or say so if there are none.

(d) List the subintervals of $\left(-\frac{3\pi}{4},\frac{3\pi}{4}\right)$ where f is concave up / concave down.

(e) List all inflection points of f in the interval $\left(-\frac{3\pi}{4},\frac{3\pi}{4}\right)$, or say so if there are none.

Name: _____

Instructor: <u>ANSWERS</u>

Math 10550, Exam II October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- \bullet The exam lasts for 1 hr. and 15 m..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!								
1.	(ullet)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(•)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(ullet)			
4.	(a)	(•)	(c)	(d)	(e)			
5.	(a)	(b)	(c)	(d)	(ullet)			
6.	(a)	(b)	(c)	(•)	(e)			
7.	(ullet)	(b)	(c)	(d)	(e)			
8.	(a)	(b)	(c)	(•)	(e)			
9.	(a)	(b)	(ullet)	(d)	(e)			
10.	(a)	(b)	(c)	(•)	(e)			

 Please do NOT write in this box.

 Multiple Choice

 11.

 12.

 13.

 Total