Name: \qquad
Instructor: \qquad

Math 10550, Exam II

October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hr . and 15 m ..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.
Multiple Choice__
11.
12.
13.
Total

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) A particle is moving along an axis. Its position at time t (seconds) is given by

$$
s(t)=t^{3}-6 t^{2}+9 t
$$

where $s(t)$ is measured in feet. What is the total distance travelled by the particle between $t=0$ and $t=2$ seconds.
(a) 6 feet
(b) 10 feet
(c) 2 feet
(d) 4 feet
(e) 5 feet
2.(6 pts .) The height of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$ and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. When the height is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?
(a) $190 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $211 \mathrm{~cm}^{2} / \mathrm{s}$
(c) $140 \mathrm{~cm}^{2} / \mathrm{s}$
(d) $11 \mathrm{~cm}^{2} / \mathrm{s}$
(e) $24 \mathrm{~cm}^{2} / \mathrm{s}$

Name: \qquad
Instructor: \qquad
3. $\left(6 \mathrm{pts}\right.$.) Use linear approximation of $f(x)=\frac{1}{\sqrt{x}}$ at $a=4$ to estimate $\frac{1}{\sqrt{3.9}}$.
(a) $\frac{1}{\sqrt{3.9}} \approx \frac{79}{160}$
(b) $\frac{1}{\sqrt{3.9}} \approx \frac{11}{20}$
(c) $\frac{1}{\sqrt{3.9}} \approx \frac{1}{2}$
(d) $\frac{1}{\sqrt{3.9}} \approx \frac{9}{20}$
(e) $\frac{1}{\sqrt{3.9}} \approx \frac{81}{160}$
4. (6 pts.) Find the linearization $L(x)$ of the function $f(x)=\sin (2 x)$ at $a=\frac{\pi}{4}$.
(a) $\quad L(x)=1-\frac{\sqrt{2} \pi}{4}+\sqrt{2} x(\mathrm{~b}) \quad L(x)=1$
(c) $\quad L(x)=1-\frac{\pi}{2}+2 x$
(d) $L(x)=1+x$
(e) $\quad L(x)=1+\frac{\pi}{2}-2 x$

Name:
Instructor: \qquad
5. (6 pts.) Find all critical points (critical numbers) of

$$
f(x)=x^{4}+\frac{16}{3} x^{3}-10 x^{2}-12
$$

(a) $x=-2,0,2$
(b) $\quad x=5,0,-1$
(c) $x=-5,1$
(d) $\quad x=0,-2$
(e) $x=-5,0,1$
6. (6 pts.) Let

$$
f(x)=x^{3}+3 x^{2}-24 x .
$$

Find the absolute maximum and absolute minimum values of f on the interval $[0,10]$.
(a) Max at $x=4$; Min at $x=0$.
(b) Max at $x=10$; Min at $x=0$.
(c) Max at $x=4$; Min at $x=1$.
(d) Max at $x=10$; Min at $x=2$.
(e) Max at $x=8$; Min at $x=2$.

Name: \qquad
Instructor: \qquad
7. (6 pts.) Find the local maxima and minima of

$$
f(x)=3 x^{2 / 3}-x
$$

where $f(x)$ is defined for all real numbers x.
(a) $\quad f$ has a local minimum at $x=0$ and a local maximum at $x=8$.
(b) $\quad f$ has a local maximum at $x=8$ and no local minimum.
(c) $\quad f$ has a local maximum at $x=0$ and a local minimum at $x=1 / 8$.
(d) $\quad f$ has a local minimum at $x=0$ and a local maximum at $x=1 / 8$.
(e) f has a local maximum at $x=1 / 8$ and no local minimum.
8. (6 pts.) Let

$$
f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x+10
$$

On which of the following intervals is the graph of the function f both decreasing and concave upward on the entire interval?
(a) $(-\infty, 2)$
(b) $(1,2)$
(c) $\left(-\infty, \frac{3}{2}\right)$
(d) $\left(\frac{3}{2}, 2\right)$
(e) $(0,2)$

Name:
Instructor: \qquad
9. (6 pts .) Consider the function

$$
f(x)=\frac{3 x^{3}-3}{(2 x+2)\left(x^{2}-7 x+10\right)}
$$

Which of the following is true?
(a) $\quad f$ has a horizontal asymptote at $y=1$ and vertical asymptotes at $x=-1,2,5$.
(b) $\quad f$ has a horizontal asymptote at $y=\frac{3}{2}$ and vertical asymptotes at $x=1,2,5$.
(c) $\quad f$ has a horizontal asymptote at $y=\frac{3}{2}$ and vertical asymptotes at $x=-1,2,5$.
(d) $\quad f$ has a horizontal asymptote at $y=-1$ and vertical asymptotes at $x=-1,2,5$.
(e) f has a horizontal asymptote at $y=\frac{3}{2},-\frac{3}{2}$ and vertical asymptotes at $x=-1,2,5$.

Name: \qquad
Instructor: \qquad
10. (6 pts.) Let f be a function of x. The table below shows whether the functions $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are positive, negative or have value 0 at each of the given values of x.

x	-2	0	2
$f^{\prime}(x)$	$=0$	$=0$	$=0$
$f^{\prime \prime}(x)$	>0	$=0$	<0

Which of the graphs shown below is a feasible graph of $f(x)$?
(Note that the label for each graph is given on the lower left of the graph.)
(a)

(b)

(c)

(d)

(e) None of the above

Name:
Instructor:

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(13 pts.) Show that

$$
x^{5}+2 x^{3}+2 x-3=0
$$

has one and exactly one solution. Identify the theorem(s) you are using.

Name: \qquad
Instructor: \qquad
12.(13 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ (measured in radians), the distance from C to B by x, and the distance from C to A by y. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name: \qquad
Instructor: \qquad
13. (14 pts.) Suppose $f(x)$ is a function which is continuous and differentiable on the interval $\left(-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$ with

$$
f^{\prime}(x)=1-\sin ^{2} x
$$

Warning: the formula shown above is for the DERIVATIVE of $f(x)$
(a) Find all critical points (critical numbers) of the function $f(x)$ in the given interval.
(b) List the subintervals of $\left(-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$ where f is increasing / decreasing.
(c) List all local maxima and local minima of f in the interval $\left(-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$, or say so if there are none.
(d) List the subintervals of $\left(-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$ where f is concave up / concave down.
(e) List all inflection points of f in the interval $\left(-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$, or say so if there are none.

Name: \qquad
Instructor: ANSWERS

Math 10550, Exam II

October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hr . and 15 m .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. ($)^{\text {(}}$	(b)	(c)	(d)	(e)
2. (a)	(b)	($)$	(d)	(e)
3. (a)	(b)	(c)	(d)	($)$
4. (a)	($)$	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	($)^{\text {(}}$
6. (a)	(b)	(c)	($)$	(e)
7. ()	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	($)$	(e)
9. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
10. (a)	(b)	(c)	($)$	(e)

Please do NOT write in this box.	
Multiple Choice__	\square
11.	
13.	
Total	

